「周波数応答」の版間の差分

 
(同じ利用者による、間の4版が非表示)
3行目: 3行目:
=== ゲインと位相 ===
=== ゲインと位相 ===


線形なシステムに正弦波入力を加えると,定常状態では出力も正弦波となる.出力の正弦波の周波数は入力と同じになるが,振幅の変化や位相差が発生する.
安定な線形なシステムに正弦波入力を加えると,定常状態では出力も正弦波となる.出力の正弦波の周波数は入力と同じになるが,振幅の変化や位相差が発生する.
入力の正弦波を<math>u(t)</math>,定常状態での出力を<math>y(t)</math>とし,それぞれ次式で表されるとする.
入力の正弦波を<math>u(t)</math>,定常状態での出力を<math>y(t)</math>とし,それぞれ次式で表されるとする.


64行目: 64行目:
=== 周波数応答関数 ===
=== 周波数応答関数 ===


システムのゲインと位相は,上記のように実際に正弦波信号を入力して調べなくても,システムの周波数応答関数(周波数伝達関数)から求めることができる.周波数応答関数とは,伝達関数のラプラス演算子<math>s</math>を<math>j \omega</math>に置き換えたものである.周波数応答関数は各周波数<math>\omega</math>を含んだ複素関数であり,その絶対値と偏角がそれぞれゲインと位相に対応する.
システムのゲインと位相は,上記のように実際に正弦波信号を入力して調べなくても,システムの周波数応答関数(周波数伝達関数)から求めることができる.周波数応答関数とは,伝達関数のラプラス演算子<math>s</math>を<math>j \omega</math>に置き換えたものである.周波数応答関数は角周波数<math>\omega</math>を含んだ複素関数であり,その絶対値と偏角がそれぞれゲインと位相に対応する.


<math>
<math>
319行目: 319行目:
実験科目や卒業研究などで,実験装置での実測結果と理論式から求めた理論曲線を比較する場面がよく出てくる.リストsample2_8は実験で求めた周波数応答と理論曲線を重ねて描くスクリプトの例である.
実験科目や卒業研究などで,実験装置での実測結果と理論式から求めた理論曲線を比較する場面がよく出てくる.リストsample2_8は実験で求めた周波数応答と理論曲線を重ねて描くスクリプトの例である.


実験による測定結果の周波数,ゲイン,位相をそれぞれ<tt>omega_e</tt>, <tt>gaindB_e</tt>, <tt>phase_e</tt>という変数に代入しておき,理論曲線と重ねている.この際,実験データの方はマーカーで示すべきであるので,<tt>semilog</tt>関数内で線類を指定している.また,関数<tt>legend</tt>でグラフに凡例を付け加えることができる.実行結果を図Bode_2_8に示す.
実験による測定結果の周波数,ゲイン,位相をそれぞれ<tt>omega_e</tt>, <tt>gaindB_e</tt>, <tt>phase_e</tt>という変数に代入しておき,理論曲線と重ねている.この際,実験データの方はマーカーで示すべきであるので,<tt>semilog</tt>関数内で線類を指定している.また,関数<tt>legend</tt>でグラフに凡例を付け加えることができる.実行結果を図7に示す.
 
[[ファイル:Bode_2_8.png|thumb|図7 実験結果と理論曲線を重ねる例]]




354行目: 356行目:
  grid('on');
  grid('on');
  legend('Theoretical', 'Experimental');
  legend('Theoretical', 'Experimental');
Bode_2_8.pdf
実験結果と理論曲線を重ねる例